
CENG3430 Rapid Prototyping of Digital Systems

Lecture 01: Introduction to VHDL

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 2

Basic Structure of a VHDL Module

A VHDL file

CENG3430 Lec01: Introduction to VHDL 3

Architecture Body
Define the internal operations of the

entity (desired functions)

Entity Declaration
Define the signals to be seen

outside externally (I/O pins)

Library Declaration
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

• Schematic Circuit of a 4-bit Comparator

*Recall: Exclusive NOR (XNOR)

– When A=B, Output Y = 0

– Otherwise, Output Y = 1

CENG3430 Lec01: Introduction to VHDL 4

A = [a3,a2,a1,a0]

B = [b3,b2,b1,b0]

equals

VHDL for programmable logic, Skahill, Addison Wesley

eqcomp4

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table

(equals=1 when A=B)

Example: 4-bit Comparator in VHDL (1/2)

• Code of 4-bit Comparator in VHDL:

eqcomp4.vhd

CENG3430 Lec01: Introduction to VHDL 5

Example: 4-bit Comparator in VHDL (2/2)

1 --the code starts here , “a comment”

2 library IEEE;

3 use IEEE.std_logic_1164.all;

4 entity eqcomp4 is

5 port (a, b: in std_logic_vector(3 downto 0);

6 equals: out std_logic);

7 end eqcomp4;

8 architecture arch_eqcomp4 of eqcomp4 is

9 begin

10 equals <= '1' when (a = b) else '0’;

11 -- “comment” equals is active high

12 end arch_eqcomp4;

Library

Declaration

Entity

Declaration

Architecture

Body

CENG3430 Lec01: Introduction to VHDL 6

Entity Declaration

1 --the code starts here , “a comment”

2 library IEEE;

3 use IEEE.std_logic_1164.all;

4 entity eqcomp4 is

5 port (a, b: in std_logic_vector(3 downto 0);

6 equals: out std_logic);

7 end eqcomp4;

8 architecture arch_eqcomp4 of eqcomp4 is

9 begin

10 equals <= '1' when (a = b) else '0’;

11 -- “comment” equals is active high

12 end arch_eqcomp4;

Library

Declaration

Entity

Declaration

Architecture

Body

Entity enclosed by the entity name eqcomp4 (entered by the user)

port defines the I/O pins

downto: define a busa, b, equals are I/O signals

I/O Signals

• An I/O signal (or I/O pin) can

– Carry logic information.

– Be implemented as a wire in hardware.

– Be “in”, “out”, “inout”, “buffer” (modes of I/O pin)

• There are many logic types of signals

1) bit: can be logic 1 or 0 only

2) std_logic: can be 1, 0, Z (high impedance), ..., etc

• Standard logic (an IEEE standard)

3) std_logic_vector: a group of wires (a bus)

• a, b: in std_logic_vector(3 downto 0); in VHDL

• a(0), a(1), a(2), a(3), b(0), b(1), b(2), b(3) are std_logic signals

CENG3430 Lec01: Introduction to VHDL 7

Class Exercise 1.1

• How many input and output pins are there in the code?

Answer: __

• What are their names and their types?

Answer: __

• What is the difference between std_logic and std_logic_vector?

Answer: __
CENG3430 Lec01: Introduction to VHDL 8

Student ID:

Name:

Date:

eqcomp4.vhd1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 entity eqcomp4 is

4 port (a, b: in std_logic_vector(3 downto 0);

5 equals: out std_logic);

6 end eqcomp4;

7 architecture arch_eqcomp4 of eqcomp4 is

8 begin

9 equals <= '1' when (a = b) else '0’;

10 end arch_eqcomp4;

Class Exercise 1.2

CENG3430 Lec01: Introduction to VHDL 10

test1.vhd1 entity test12 is

2 port (in1, in2: in std_logic;

3 out1: out std_logic);

4 end test12;

5 architecture test12arch of test12 is

6 begin

7 out1 <= in1 or in2;

8 end test12_arch;

• Give line numbers of (1) entity declaration and (2) arch. body.

Answer: __

• Find an error in the VHDL code.

Answer: __

• Draw the schematic chip and names the pins.

Answer: __

• Underline the words that are defined by users in the code.

Answer: __

Student ID:

Name:

Date:

Class Exercise 1.3

CENG3430 Lec01: Introduction to VHDL 12

• Rewrite the VHDL code in class exercise 1.2, with

1) Entity name is test1x (not test1)

2) Input names are in1x and in2x, resp. (not in1 and in2)

3) Output name is out1x (not out1)

4) Logic types of input and output are bit (not std_logic)

5) Architecture name is test1x_arch (not test1_arch)

test1x.vhd

Student ID:

Name:

Date:

Modes of I/O Pins

• Modes of I/O pin should be explicitly specified in

port of entity declaration:

Example:

entity do_care is port(

s: in std_logic_vector(1 downto 0);

y: buffer std_logic);

end do_care;

• There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

CENG3430 Lec01: Introduction to VHDL 14

Class Exercise 1.4

CENG3430 Lec01: Introduction to VHDL 15

• State the difference between out and buffer.

Answer: ___________________________________

__

• Based on the following schematic, identify the modes

of the IO pins.

VHDL for programmable logic, Skahill, Addison Wesley

A

B

C

D

F

G

E

Student ID:

Name:

Date:

Reviews for

Common

Logic Gates

Architecture Body (More in Lec03)

• Architecture Body: Defines the operation of the chip

Example:

architecture arch_eqcomp4 of eqcomp4 is

begin

equals <= '1' when (a = b) else '0’;

-- “comment” equals is active high

end arch_eqcomp4;

How to read it?

– arch_eqcomp4: the architecture name (entered by the user)

– equals, a, b: I/O signal pins designed by the user in the entity

declaration

– begin … end: define the internal operation

• equals <= '1' when (a = b) else '0’;

– “--”: comment

CENG3430 Lec01: Introduction to VHDL 17

Class Exercise 1.5

• Draw the schematic circuit for the following code.
1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity test15 is

4 port(in1: in std_logic_vector (2 downto 0);

5 out1: out std_logic_vector (3 downto 0));

6 end test15;

7 architecture test15_arch of test is

8 begin

9 out1(0)<= in1(1);

10 out1(1)<= in1(2);

11 out1(2)<= not(in1(0) and in1(1));

12 out1(3)<= '1';

13 end test15_arch ;

CENG3430 Lec01: Introduction to VHDL 18

Student ID:

Name:

Date:

Class Exercise 1.6

• Consider the circuit:

– What is this circuit for?

Answer: ________________

– Fill in the truth table.

– Fill in the blanks of code.

CENG3430 Lec01: Introduction to VHDL 20

in1 in2
out

00

out

10

out

11

out

01

0 0

1 0

1 1

0 1

1 entity test16 is

2 port (in1,in2: in std_logic;

3 out00,out01,out10,out11: out std_logic);

4 end test16;

5 architecture test16_arch of test16 is

6 begin

7 out00 <= not(________________);

8 out10 <= not(________________);

9 out11 <= not(________________);

10 out01 <= not(________________);

11 end test16_arch;

Student ID:

Name:

Date:

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 22

Identifiers

• Identifiers: Used to represent and name an object

– An object can be constant, signal or variable.

• Rules for naming data objects:

1) Made up of alphabets, numbers, and underscores

2) First character must be a letter

3) Last character CANNOT be an underscore

4) NOT case sensitive

• Txclk, Txclk, TXCLK, TxClk are equivalent

5) Two connected underscores are NOT allowed

6) VHDL-reserved words may NOT be used

CENG3430 Lec01: Introduction to VHDL 23

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ite_r_vhdl_reserved_words.htm

Class Exercise 1.7

• Determine whether the following identifiers are legal

or not. If not, please give your reasons.

– tx_clk

– _tx_clk

– Three_State_Enable

– 8B10B

– sel7D

– HIT_1124

– large#number

– link__bar

– select

– rx_clk_

CENG3430 Lec01: Introduction to VHDL 24

Student ID:

Name:

Date:

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 26

Objects: 3 Different Data Objects

• Data objects are assigned types and hold values of

the specified types.

• Data objects belong to one of three classes:

1) Constants (Globla): Hold unchangeable values

• E.g., constant width: INTEGER :=8;

2) Signals (Globla): Represent physical wires

• E.g., signal count: BIT := ‘1’;

3) Variables (Local): Used only by programmers for

internal representation (do not exist physically)

• E.g., variable flag: BOOLEAN := TRUE;

• Data objects must be declared before being used.

CENG3430 Lec01: Introduction to VHDL 27

Constant Objects (Global)

constant CONST_NAME: <type> := <value>;

Note: Constants must be declared with initialized values.

• Examples:

– constant CONST_NAME: STD_LOGIC := 'Z';

– constant CONST_NAME: STD_LOGIC_VECTOR (3

downto 0) := "0-0-";

• ‘-’ is don’t care

• Constants can be declared in

– Anywhere allowed for declaration.

CENG3430 Lec01: Introduction to VHDL 28

Signal Objects (Global)

signal SIG_NAME: <type> [: <value>];

Note: Signals can be declared without initialized values.

• Examples:

– signal s1_bool : BOOLEAN;

• Declared without initialized value

– signal xsl_int1: INTEGER :=175;

– signal su2_bit: BIT :=‘1’;

• Signals can be declared

– Either in the “port” of the entity declaration,

– Or before the “begin” of the architecture body.

CENG3430 Lec01: Introduction to VHDL 29

Recall: Modes of I/O Pins

• If a signal is declared in port, it is used as I/O pins.

• Modes of I/O pin should be explicitly specified in

port of entity declaration:

Example:

entity do_care is port(

s: in std_logic_vector(1 downto 0);

y: buffer std_logic);

end do_care;

• There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity
CENG3430 Lec01: Introduction to VHDL 30

Variable Objects (Local)

variable VAR_NAME: <type> [: <value>];

Note: Variables can be declared without initialized values.

• Examples:

– variable v1_bool : BOOLEAN:= TRUE;

– variable val_int1: INTEGER:=135;

– variable vv2_bit: BIT;

• Declared without initialized value

• Variables can only be declared/used in the process

statement in the architecture body (see Lec03).

CENG3430 Lec01: Introduction to VHDL 31

Signals and Variables Assignments

• Both signals and variables can be declared without

initialized values.

• Their values can be assigned after declaration.

– Syntax of signal assignment:

SIG_NAME <= <expression>;

– Syntax of variable assignment:

VAR_NAME := <expression>;

CENG3430 Lec01: Introduction to VHDL 32

Class Exercise 1.8

• Consider the following segment of VHDL code:

• What are identifiers:

Answer: __

• What are input signals?

Answer: __

• What is the type of signal DIN?

Answer: __

• What is the mode of DOUT?

Answer: __

CENG3430 Lec01: Introduction to VHDL 33

Student ID:

Name:

Date:

entity test18 is port (

CLK, ASYNC ,LOAD: in STD_LOGIC;

DIN: in STD_LOGIC_VECTOR(3 downto 0);

DOUT: out STD_LOGIC_VECTOR(3 downto 0));

end test18;

Class Exercise 1.9

CENG3430 Lec01: Introduction to VHDL 35

Student ID:

Name:

Date:

1 entity nandgate is

2 port (in1, in2: in STD_LOGIC;

3 out1: out STD_LOGIC);

4 end nandgate;

5 architecture nandgate_arch of nandgate is

6 ___

7 begin

8 connect1 <= in1 and in2;

9 out1<= not connect1;

10 end nandgate_arch;

• Declare a signal named “connect1” in Line 6.

• Can you assign an I/O mode to this signal? Why?

Answer: __

• Where can we declare signals?

Answer: __

• Draw the schematic circuit for the code.

Alias

• An alias is an alternate identifier for an existing object.

– It is NOT a new object.

– Referencing the alias is equivalent to the original one.

– It is often used as a convenient method to identify a range

of an array (signal bus) type.

• Example:

– signal sig_x: std_logic_vector(31 downto 0);

– alias top_x: std_logic_vector (3 downto 0)

is sig_x(31 downto 28);

CENG3430 Lec01: Introduction to VHDL 37

What we learnt so far

• Identifier

• Data Object

– Constant

– Signal

• In Port: External I/O Pins

–Modes of I/O Pins: In, Out, Inout, Buffer

• In Architecture Body: Internal Signals

– Variable

CENG3430 Lec01: Introduction to VHDL 38

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 39

Data Types in VHDL (1/2)

CENG3430 Lec01: Introduction to VHDL 40

Data
Types

Enumeration:
E.g., red, blue

Boolean:
“TRUE”,
”FALSE”

Bit:
0,1

Character:
E.g., ‘a’,’b’

String:
E.g., “text”

Integer:
E.g., 1,234

Float:
E.g., 0.1234

Standard
Logic:

E.g., resolved,
unresolved

Data Types in VHDL (2/2)

• VHDL is strongly-typed language.

– Data objects of different base types CANNOT to assigned

to each other without the use of type-conversion.

• A type has a set of values and a set of operations.

• Common types can be classified into two classes:

– Scalar Types

• Integer Type

• Floating Type

• Enumeration Type

• Physical Type

– Composite Types

• Array Type

• Record Type

CENG3430 Lec01: Introduction to VHDL 41

Scalar: Integer Type

• An integer type can be defined with or without

specifying a range.

– If a range is not specified, VHDL allows integers to have a

minimum rage of

−2,147,483,647 𝑡𝑜 2,147,483,647

−(231− 1) 𝑡𝑜 (231 − 1)

– Or a range can be specified, e.g.,

variable a: integer range 0 to 255;

CENG3430 Lec01: Introduction to VHDL 42

Scalar: Floating Type

• Floating point type values are used to approximate

real numbers.

• The only predefined floating type is named REAL,

which includes the range

−1.0𝐸38 𝑡𝑜 + 1.0𝐸38

• Floating point types are rarely used (or even

not supported) in code to be synthesized.

– Because of its huge demand of resources.

CENG3430 Lec01: Introduction to VHDL 43

Scalar: Enumeration Type (1/2)

• How to introduce an abstract concept into a circuit?

• An enumeration type is defined by a list of values.

– The list of values may be defined by users.

– Example:

type colors is (RED, GREEN, BLUE);

signal my_color: colors;

• Enumeration types are often defined for

state machines (see Lec05).

• There are two particularly useful enumeration types

predefined by the IEEE 1076/1993 standards.

– type BOOLEAN is (FALSE, TRUE);

– type BIT is (‘0’, ‘1’);

CENG3430 Lec01: Introduction to VHDL 44

Scalar: Enumeration Type (2/2)

• An enumerated type is ordered.

– The order in which the values are listed in the type

declaration defines their relation.

– The leftmost value is less than all other values.

– Each values is greater than the one to the left, and less

than the one to the right.

• Example:

type colors is (RED, GREEN, BLUE)

signal my_color: colors;

– Then a comparison of my_color can be:

when my_color >= RED

CENG3430 Lec01: Introduction to VHDL 45

Scalar: Physical Type

• Physical type values are used as measurement units.

– They are used mainly in simulations (see Lab01).

• The only predefined physical type is TIME.

– Its primary unit is fs (femtoseconds) as follows:
type time is range -2147483647 to 2147483647

units

fs;

ps = 1000 fs;

ns = 1000 ps;

us = 1000 ns;

ms = 1000 us;

sec = 1000 ms;

min = 60 sec;

hr = 60 min;

end units;

CENG3430 Lec01: Introduction to VHDL 46

Composite: Array Type

• An object of an array type consists of multiple

elements of the same type.

• The most commonly used array types are those

predefined by the IEEE 1076 and 1164 standards:
type BIT_VECTOR is array (NATURAL range <>) of bit;

type STD_LOGIC_VECTOR is array (NATURAL range <>) of std_logic;

– Their range are not specified (using range <>), and only

bounded by NATURAL (positive integers).

• Example:
port (a: in std_logic_vector (3 downto 0);

b: in std_logic_vector (0 to 3);

equals: out std_logic);

– a, b are both 4-bit vectors of std_logic.

CENG3430 Lec01: Introduction to VHDL 47

Class Exercise 1.10

• Given

a: std_logic_vector (3 downto 0);

• Create a 4-bit bus c using “to” instead of “downto”:

• Draw the circuit for this assignment c <= a

CENG3430 Lec01: Introduction to VHDL 48

Student ID:

Name:

Date:

Composite: Record Type

• An object of a record type consists of multiple

elements of the different types.

– Individual fields of a record can be used by element name.

• Example:

type iocell is record

buffer_in: bit_vector(7 downto 0);

bnable: bit;

buffer_out: bit_vector(7 downto 0);

end record;

– Then we can use the record as follows:

signal bus_a: iocell;

signal vec: bit_vector(7 downto 0);

bus_a.buffer_in <= vec;
CENG3430 Lec01: Introduction to VHDL 50

Types and Subtypes

• A subtype is a type with a constraint.

– Subtypes are mostly used to define objects based on

existing base types with a constraint.

• Example:

– Without subtype

signal my_byte: bit_vector(7 downto 0);

– With subtype:

subtype byte is bit_vector(7 downto 0);

signal my_byte: byte;

• Subtypes are also used to resolve a base type.

– A resolution function is defined by the IEEE 1164 standard.

subtype std_logic is resolved std_ulogic;

• Resolved is the name of the resolution function.
CENG3430 Lec01: Introduction to VHDL 51

Resolved Logic Concept

• Resolved Logic (Multi-value Signal): Multiple outputs

can be connected together to drive a signal.

– The resolution function is used to determine how multiple

values from different sources (drivers) for a signal will be

reduced to one value.

• Single-value Signal Example:

signal a, c: bit;

c <= a;

• Multi-value Signal Example:

signal a, b, c: bit;

c <= a;

c <= b;

CENG3430 Lec01: Introduction to VHDL 52

a c

b

?

 We need to “resolve” it!

a c

std_logic vs. std_ulogic (1/2)

• std_logic: a type of resolved logic, that means a

signal can be driven by 2 inputs

• std_ulogic (“u” means unresolved): a type of

unresolved logic, that means a signal CANNOT

be driven by 2 inputs

CENG3430 Lec01: Introduction to VHDL 53

a c

b

?

std_logic vs. std_ulogic (2/2)

• How to use it?

library IEEE;

use IEEE.std_logic_1164.all;

entity

architecture

CENG3430 Lec01: Introduction to VHDL 54

IEEE 1164: 9-valued Logic Standard

• ‘U’: Uninitialized

• ‘X’: Forcing Unknown

• ‘0’: Forcing 0

• ‘1’: Forcing 1

• ‘Z’: High Impedance (Float)

• ‘W’: Weak Unknown

• ‘L’: Weak 0

• ‘H’: Weak 1

• ‘-’: Don’t care

CENG3430 Lec01: Introduction to VHDL 55

U X 0 1 Z W L H –

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 X 0 0 0 0 X

1 U X X 1 1 1 1 1 X

Z U X 0 1 Z W L H X

W U X 0 1 W W W W X

L U X 0 1 L W L W X

H U X 0 1 H W W H X

VHDL Resolution Table

• Rule: When 2 signals meet, the forcing signal dominates.

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 56

Attributes (1/2)

• An attribute provides information about items such as

entities, architecture, types, and signals.

– There are several useful predefined value, signal, and

range attributes.

• Example:

type count is integer range 0 to 127;

type states is (idle, decision, read, write);

type word is array(15 downto 0) of std_logic;

– Then

CENG3430 Lec01: Introduction to VHDL 57

count’left = 0

states’left = idle

word’left = 15

count’right = 127

states’right = write

word’right = 0

Attributes (2/2)

• Another important signal attribute is the ‘event.

– This attribute yields a Boolean value of TRUE if an event

has just occurred on the signal.

– It is used primarily to determine if a clock has transitioned.

• Example (more in Lec04):

…

port(my_in, clock: in std_logic;

my_out: out std_logic);

…

if clock = ‘1’ and clock’event then

my_out <= my_in;

CENG3430 Lec01: Introduction to VHDL 58

Outline

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 59

VHDL Operators

CENG3430 Lec01: Introduction to VHDL 60

VHDL
Operators

Logical /
Relation
e.g and,=

Shift
e.g.
SLR

Basic
e.g., +,-,&,

Abs,**

Basic Operators

+ arithmetic add, for integer, float.

- arithmetic subtract, for integer, float.

* multiplication

/ division

rem remainder

mod modulo (𝐴 𝑚𝑜𝑑 𝐵 = 𝐴 − 𝐵 ∗ 𝑁 ,𝑁 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

abs absolute value

** exponentiation (e.g., 2**3 is 8)

& concatenation (e.g., ‘0’ & ‘1’  “01”)

CENG3430 Lec01: Introduction to VHDL 61

Shift / Rotate Operators

• Logical Shift and Rotate

– sll shift left logical, fill blank with 0

– srl shift right logical, fill blank with 0

– rol rotate left logical, circular operation

• E.g. “10010101” rol 3 is “10101100”

– ror rotate right logical, circular operation

• Arithmetic Shift

– sla shift left arithmetic, fill blank with 0, same as sll

– sra shift right arithmetic, fill blank with sign bit (MSB)

CENG3430 Lec01: Introduction to VHDL 62

Logical / Relation Operators

• Logical Operators: and, or, nand, nor, xor, xnor,
not have their usual meanings.
– E.g., nand is NOT associative

• (A nand B) nand C ≠ A nand (B nand C)

• A nand B nand C is illegal

• Relation Operators (result is Boolean)
= equal

/= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

CENG3430 Lec01: Introduction to VHDL 63

Summary

• Basic Structure of a VHDL Module

– Library Declaration

– Entity Declaration

– Architecture Body

• Identifiers, Data Objects, and Data Types in VHDL

– Identifier

– Data Objects

• Constant

• Signal

• Variable

– Data Types

– Attributes

• Operators in VHDL
CENG3430 Lec01: Introduction to VHDL 64

Review: Basic Gates in Logic Circuits

CENG3430 Lec00: Course Information http://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1 65

Review: NAND and NOR Gates

• In many technologies, implementation of NAND gates

or NOR gates is easier than that of AND or OR gates.

– NAND Gate:

– NOR Gate:

• Any logic function can be realized using only NAND

gates or only NOR gates.
CENG3430 Lec00: Course Information 66http://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1

(analogy)

Review: Tristate Logic

• The concept of tristate logic is also essential in digital

system designs.

– Directly connecting outputs of two gates together might not

operate properly, and might cause damage to the circuit.

– One ways is to use tristate buffers.

• Tristate buffers are gates with a high impedance state

(High-Z or Z) in addition to high and low logic states.

– High impedance state is equivalent to an open circuit.

CENG3430 Lec00: Course Information 67

Review: Buffer Gate

• Double inversion would “cancel” each other out.

– A weak signal may be amplified by means of two inverters.

• For this purpose, a special logic gate called a buffer

gate is manufactured to perform the double inversion.

– Its symbol is simply a triangle, with no inverting “bubble” on

the output terminal:

CENG3430 Lec01: Introduction to VHDL 68https://www.allaboutcircuits.com/textbook/digital/chpt-3/buffer-gate/

